Product Description
Product Description
European type hoist’s body is welded by professional proximate matter,with exquisite structure, excellent appearance and unique innovations.They are suitable for various material transfer sites such as machining shops,assembly shops,warehouse and other material handling sites especially for sites where the height of workshop is limited.
Detail Features:
1) Lifting Motor
Ip55 protecting level, F level insulation
High efficiency double speed lifting motor, ratio 6:1
60% ED, strong power and sufficient stock
With thermal protecting function to prevent from over temperature
Sturdy and durable aluminum alloy motor, light weight, good heat dissipation
High-tech totally enclosed aluminum alloy gearbox
Quenched and fine ground gear makes motor stable and low noise
Free maintenance design:no need to change lubrication oil in lifetime
DC brake, quick response
The safety factor of brake is higher than 180%, manual release for optional
With self-adjust function
More than 1 million times brake operation
2) Traveling Motor
Motor ,gearbox and brake three-in-1
Compact structure ,small size and light weight
Direct drive flexible design, stable torque transfer
30% rotational efficiency higher than traditional coupling
Suitable for frequency reverse switching
Squirrel cage variable frequency motor 60% ED
IP55 protecting level, H level insulation
Safe and reliable DC brake
Aluminum alloy shell, hard tooth surface reducer, well sealing without oil leakage
3) Imported Wire Rope
High strength pressed CHINAMFG galvanized wire rope
2160N/mm² tensile strength
40% smaller than traditional wire rope
Good flexibility and long service life
Press rope block for special use, intensively layout to prevent form loose, fastening is more reliable
Fusible cutout rope technology,fusible surface is firm
Effectively prevent from loose to extend service life
4) Hook Assembly
Match to the standard of DIN15400/15401, forged by high strength alloy steel
With safety latch to protect safely
360° horizontal and 180° vertical rotations
High strength extrusion pulley, high finish rope groove to avoid friction with wire rope
5) Control System
Automatic orientation
Automatic centering
Automatic rectify deviation
Inch moving ,joggle
Anti-shock
Regional Protection
Electronic anti-sway
Remote communication, digital maintenance
6) Electric Unit
Stable and durable contactor control, reliably work in bad condition
Standard 3 phase voltage:380-415v,50hz(440-480v,60hz)
Standard control voltage:48v
Sturdy and durable control panel, IP54 protecting level
7) Rope Xihu (West Lake) Dis.r
High performance engineering material,light self-weight,sturdy and reliable
Circular design
Precise rope guide system
Single Girder European Type Wire Rope Hoist:
Load Capacity(M) |
Lift Height (M) |
Lift Speed (m/min) |
Travelling Speed (m/min) |
Lift Motor Power(KW) |
Travel Motor Power (KW) |
Rope Dia (mm) |
Group (ISO) |
Rope Reeving |
3.2 |
6/9/12/15/18 |
5/0.8 |
20/5 |
3.2/0.45 |
2*0.37/0.1 |
7 |
M5 |
4/1 |
5 |
6/9/12/15/18 |
5/0.8 |
20/5 |
6.0/0.9 |
2*0.37/0.1 |
9 |
M5 |
4/1 |
6.3 |
6/9/12/15/18 |
5/0.8 |
20/5 |
6.0/0.9 |
2*0.37/0.1 |
9 |
M4 |
4/1 |
8 |
6/9/12/15/18 |
5/0.8 |
20/5 |
9.5/1.5 |
2*0.75/0.18 |
13 |
M6 |
4/1 |
10 |
6/9/12/15/18 |
5/0.8 |
20/5 |
9.5/1.5 |
2*0.75/0.18 |
13 |
M5 |
4/1 |
12.5 |
6/9/12/15/18 |
5/0.8 |
20/5 |
12.5/1.9 |
2*0.75/0.18 |
13 |
M4 |
4/1 |
Double Girder European Type Wire Rope Hoist:
Load Capacity(M) |
Lift Height (M) |
Lift Speed (m/min) |
Travelling Speed (m/min) |
Lift Motor Power(KW) |
Travel Motor Power (KW) |
Rope Dia (mm) |
Group (ISO) |
Rope Reeving |
5 |
6/9/12/15/18 |
5/0.8 |
20/5 |
6.0/0.9 |
2*0.37 |
11 |
M5 |
4/1 |
10 |
6/9/12/15/18 |
5/0.8 |
20/5 |
9.5/1.5 |
2*0.55 |
15 |
M5 |
4/1 |
12.5 |
6/9/12/15/18 |
5/0.8 |
20/5 |
12.5/1.9 |
2*0.55 |
15 |
M4 |
4/1 |
16 |
6/9/12/15/18 |
4/0.6 |
20/5 |
16/2.6 |
2*1.1 |
18 |
M5 |
4/1 |
20 |
6/9/12/15/18 |
4/0.6 |
20/5 |
16/2.6 |
2*1.1 |
18 |
M4 |
4/1 |
20 |
6/9/12/15/18 |
3.4/0.5 |
20/5 |
16/2.6 |
2*1.1 |
18 |
M5 |
4/1 |
25 |
6/9/12/15/18 |
3.4/0.5 |
20/5 |
16/2.6 |
2*1.1 |
18 |
M4 |
4/1 |
40 |
6/9/12/15/18 |
4.9/0.8 |
20/5 |
38 |
2*1.5 |
20 |
M4 |
4/1 |
63 |
6/9/12/15/18 |
3.3/0.5 |
20/5 |
38 |
2*2.2 |
20 |
M4 |
4/1 |
Compared with the traditional electric wire rope hoist, European type electric wire rope hoist is a newly developed hoist with advanced design technology according to the FEM standards and other regulations The new serial of wire rope electric hoist is environment-friendly, energy saving and cost-effective which ranks top among similar products.
Advantages:1. Optimized design with FEM standard, with light and beautiful appearence.
2. Safe and efficient to operate, and meet current requirements of low noise and environmental protection.
3. Equipped with intelligent safe operation monitoring system which can uninterruptedly record working status and prevent unprofessional operations. And controller will perform a self-test before starting, including the power supply voltage level,default phase, button zero status and validity of each safety device.
4. Imported Motors, aluminum alloy drawing molding with excellent heat dissipation, and overheated protection and alarm function.
5. Maintenance-free design of whole body and less wearing parts make it convenient to maintain.
Packaging & Shipping
About Us
FAQ
Q1: What are you? Trade Company or manufacturer?
We are both manufacturer & trading company
Q2: What’s the advantage of your company?
We’ve experienced manufacturer and overseas dealer. Our products have been exported to over 110 countries.
An independent research team especially focusing on crane and hoist design upgrade. A professional service
team for customers will provide feedback within 24 hours.
Q3: What’s the sample & MOQ to your company?
Sample order MOQ can be 1 set and the product you ordered will be sent in a week as long as inventory is available.
Q4: Can I customize the product according to my own willing?
Yes, OEM/ODM are available, we can customize as customer’s request.
Q5: How is the package during transportation?
Composite wooden crate for the electrical parts, waterproof cloth for the steel structure, then packed in a metal crate.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 12 Months |
---|---|
Warranty: | 12 Months |
Application: | Double Beam Crane, Gantry Crane, Bridge Crane, Tower Crane, Single Grinder Crane, Lifting Platform, Small Crane |
Type: | Electric Hoist |
Sling Type: | Wire Rope |
Lift Speed: | >8m/min |
Customization: |
Available
|
|
---|
What are the typical tolerances and quality standards for injection molded parts?
When it comes to injection molded parts, the tolerances and quality standards can vary depending on several factors, including the specific application, industry requirements, and the capabilities of the injection molding process. Here are some general considerations regarding tolerances and quality standards:
Tolerances:
The tolerances for injection molded parts typically refer to the allowable deviation from the intended design dimensions. These tolerances are influenced by various factors, including the part geometry, material properties, mold design, and process capabilities. It’s important to note that achieving tighter tolerances often requires more precise tooling, tighter process control, and additional post-processing steps. Here are some common types of tolerances found in injection molding:
1. Dimensional Tolerances:
Dimensional tolerances define the acceptable range of variation for linear dimensions, such as length, width, height, and diameter. The specific tolerances depend on the part’s critical dimensions and functional requirements. Typical dimensional tolerances for injection molded parts can range from +/- 0.05 mm to +/- 0.5 mm or even tighter, depending on the complexity of the part and the process capabilities.
2. Geometric Tolerances:
Geometric tolerances specify the allowable variation in shape, form, and orientation of features on the part. These tolerances are often expressed using symbols and control the relationships between various geometric elements. Common geometric tolerances include flatness, straightness, circularity, concentricity, perpendicularity, and angularity. The specific geometric tolerances depend on the part’s design requirements and the manufacturing capabilities.
3. Surface Finish Tolerances:
Surface finish tolerances define the acceptable variation in the texture, roughness, and appearance of the part’s surfaces. The surface finish requirements are typically specified using roughness parameters, such as Ra (arithmetical average roughness) or Rz (maximum height of the roughness profile). The specific surface finish tolerances depend on the part’s aesthetic requirements, functional needs, and the material being used.
Quality Standards:
In addition to tolerances, injection molded parts are subject to various quality standards that ensure their performance, reliability, and consistency. These standards may be industry-specific or based on international standards organizations. Here are some commonly referenced quality standards for injection molded parts:
1. ISO 9001:
The ISO 9001 standard is a widely recognized quality management system that establishes criteria for the overall quality control and management of an organization. Injection molding companies often seek ISO 9001 certification to demonstrate their commitment to quality and adherence to standardized processes for design, production, and customer satisfaction.
2. ISO 13485:
ISO 13485 is a specific quality management system standard for medical devices. Injection molded parts used in the medical industry must adhere to this standard to ensure they meet the stringent quality requirements for safety, efficacy, and regulatory compliance.
3. Automotive Industry Standards:
The automotive industry has its own set of quality standards, such as ISO/TS 16949 (now IATF 16949), which focuses on the quality management system for automotive suppliers. These standards encompass requirements for product design, development, production, installation, and servicing, ensuring the quality and reliability of injection molded parts used in automobiles.
4. Industry-Specific Standards:
Various industries may have specific quality standards or guidelines that pertain to injection molded parts. For example, the aerospace industry may reference standards like AS9100, while the electronics industry may adhere to standards such as IPC-A-610 for acceptability of electronic assemblies.
It’s important to note that the specific tolerances and quality standards for injection molded parts can vary significantly depending on the application and industry requirements. Design engineers and manufacturers work together to define the appropriate tolerances and quality standards based on the functional requirements, cost considerations, and the capabilities of the injection molding process.
Are there specific considerations for choosing injection molded parts in applications with varying environmental conditions or industry standards?
Yes, there are specific considerations to keep in mind when choosing injection molded parts for applications with varying environmental conditions or industry standards. These factors play a crucial role in ensuring that the selected parts can withstand the specific operating conditions and meet the required standards. Here’s a detailed explanation of the considerations for choosing injection molded parts in such applications:
1. Material Selection:
The choice of material for injection molded parts is crucial when considering varying environmental conditions or industry standards. Different materials offer varying levels of resistance to factors such as temperature extremes, UV exposure, chemicals, moisture, or mechanical stress. Understanding the specific environmental conditions and industry requirements is essential in selecting a material that can withstand these conditions while meeting the necessary standards for performance, durability, and safety.
2. Temperature Resistance:
In applications with extreme temperature variations, it is important to choose injection molded parts that can withstand the specific temperature range. Some materials, such as engineering thermoplastics, exhibit excellent high-temperature resistance, while others may be more suitable for low-temperature environments. Consideration should also be given to the potential for thermal expansion or contraction, as it can affect the dimensional stability and overall performance of the parts.
3. Chemical Resistance:
In industries where exposure to chemicals is common, it is critical to select injection molded parts that can resist chemical attack and degradation. Different materials have varying levels of chemical resistance, and it is important to choose a material that is compatible with the specific chemicals present in the application environment. Consideration should also be given to factors such as prolonged exposure, concentration, and frequency of contact with chemicals.
4. UV Stability:
For applications exposed to outdoor environments or intense UV radiation, selecting injection molded parts with UV stability is essential. UV radiation can cause material degradation, discoloration, or loss of mechanical properties over time. Materials with UV stabilizers or additives can provide enhanced resistance to UV radiation, ensuring the longevity and performance of the parts in outdoor or UV-exposed applications.
5. Mechanical Strength and Impact Resistance:
In applications where mechanical stress or impact resistance is critical, choosing injection molded parts with the appropriate mechanical properties is important. Materials with high tensile strength, impact resistance, or toughness can ensure that the parts can withstand the required loads, vibrations, or impacts without failure. Consideration should also be given to factors such as fatigue resistance, abrasion resistance, or flexibility, depending on the specific application requirements.
6. Compliance with Industry Standards:
When selecting injection molded parts for applications governed by industry standards or regulations, it is essential to ensure that the chosen parts comply with the required standards. This includes standards for dimensions, tolerances, safety, flammability, electrical properties, or specific performance criteria. Choosing parts that are certified or tested to meet the relevant industry standards helps ensure compliance and reliability in the intended application.
7. Environmental Considerations:
In today’s environmentally conscious landscape, considering the sustainability and environmental impact of injection molded parts is increasingly important. Choosing materials that are recyclable or biodegradable can align with sustainability goals. Additionally, evaluating factors such as energy consumption during manufacturing, waste reduction, or the use of environmentally friendly manufacturing processes can contribute to environmentally responsible choices.
8. Customization and Design Flexibility:
Lastly, the design flexibility and customization options offered by injection molded parts can be advantageous in meeting specific environmental or industry requirements. Injection molding allows for intricate designs, complex geometries, and the incorporation of features such as gaskets, seals, or mounting points. Customization options for color, texture, or surface finish can also be considered to meet specific branding or aesthetic requirements.
Considering these specific considerations when choosing injection molded parts for applications with varying environmental conditions or industry standards ensures that the selected parts are well-suited for their intended use, providing optimal performance, durability, and compliance with the required standards.
How do injection molded parts compare to other manufacturing methods in terms of cost and efficiency?
Injection molded parts have distinct advantages over other manufacturing methods when it comes to cost and efficiency. The injection molding process offers high efficiency and cost-effectiveness, especially for large-scale production. Here’s a detailed explanation of how injection molded parts compare to other manufacturing methods:
Cost Comparison:
Injection molding can be cost-effective compared to other manufacturing methods for several reasons:
1. Tooling Costs:
Injection molding requires an initial investment in creating molds, which can be costly. However, once the molds are made, they can be used repeatedly for producing a large number of parts, resulting in a lower per-unit cost. The amortized tooling costs make injection molding more cost-effective for high-volume production runs.
2. Material Efficiency:
Injection molding is highly efficient in terms of material usage. The process allows for precise control over the amount of material injected into the mold, minimizing waste. Additionally, excess material from the molding process can be recycled and reused, further reducing material costs compared to methods that generate more significant amounts of waste.
3. Labor Costs:
Injection molding is a highly automated process, requiring minimal labor compared to other manufacturing methods. Once the molds are set up and the process parameters are established, the injection molding machine can run continuously, producing parts with minimal human intervention. This automation reduces labor costs and increases overall efficiency.
Efficiency Comparison:
Injection molded parts offer several advantages in terms of efficiency:
1. Rapid Production Cycle:
Injection molding is a fast manufacturing process, capable of producing parts in a relatively short cycle time. The cycle time depends on factors such as part complexity, material properties, and cooling time. However, compared to other methods such as machining or casting, injection molding can produce multiple parts simultaneously in each cycle, resulting in higher production rates and improved efficiency.
2. High Precision and Consistency:
Injection molding enables the production of parts with high precision and consistency. The molds used in injection molding are designed to provide accurate and repeatable dimensional control. This precision ensures that each part meets the required specifications, reducing the need for additional machining or post-processing operations. The ability to consistently produce precise parts enhances efficiency and reduces time and costs associated with rework or rejected parts.
3. Scalability:
Injection molding is highly scalable, making it suitable for both low-volume and high-volume production. Once the molds are created, the injection molding process can be easily replicated, allowing for efficient production of identical parts. The ability to scale production quickly and efficiently makes injection molding a preferred method for meeting changing market demands.
4. Design Complexity:
Injection molding supports the production of parts with complex geometries and intricate details. The molds can be designed to accommodate undercuts, thin walls, and complex shapes that may be challenging or costly with other manufacturing methods. This flexibility in design allows for the integration of multiple components into a single part, reducing assembly requirements and potential points of failure. The ability to produce complex designs efficiently enhances overall efficiency and functionality.
5. Material Versatility:
Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency. This material versatility allows for efficient customization and optimization of part performance.
In summary, injection molded parts are cost-effective and efficient compared to many other manufacturing methods. The initial tooling costs are offset by the ability to produce a large number of parts at a lower per-unit cost. The material efficiency, labor automation, rapid production cycle, high precision, scalability, design complexity, and material versatility contribute to the overall cost-effectiveness and efficiency of injection molding. These advantages make injection molding a preferred choice for various industries seeking to produce high-quality parts efficiently and economically.
editor by Dream 2024-05-02