Product Description
Specification OF PTO Drive Shaft —Speedway:
We developed and produced many tractor spare parts for Japanese Tractors .
Product Name: Japanese tractor transmission clutch disc parts for B1400 B7000
Tractor Model we can supply: B1500/1400,B5000,B6000, B7000, TU1400, TX1400, TX1500, YM F1401, YM1400 ETC.
The parts for example: Tyres, rim Jante, Kit coupling KB-TX 3 point linkage. Exhaust pipe Steering wheel. Kit coupling YM F14/F15, gear shaft, PTO shaft, PTO cardan, key, regulator ect.
Most of the spare parts are with stock. If you are interested in, please feel easy to contact me.
Other relevant parts for cars or machinery we have made in our workshop are as follows:
Drive shaft parts and assemblies,
Universal joint parts and assemblies,
PTO drive shafts,
Spline shafts,
Slip yokes,
Weld yokes,
Flange yokes,
Steering columns,
Connecting rods,
etc.
Product Description
Pto Drive Shaft Item:
Item | Cross journal size | 540dak-rpm | 1000dak-rpm | |||
Series 1 | 22mm | 54mm | 12KW | 16HP | 18KW | 25HP |
Series 2 | 23.8mm | 61.3mm | 15KW | 21HP | 23KW | 31HP |
Series 3 | 27mm | 70mm | 26KW | 35HP | 40KW | 55HP |
Series 4 | 27mm | 74.6mm | 26KW | 35HP | 40KW | 55HP |
Series 5 | 30.2mm | 80mm | 35KW | 47HP | 54KW | 74HP |
Series 6 | 30.2mm | 92mm | 47KW | 64HP | 74KW | 100HP |
Series 7 | 30.2mm | 106.5mm | 55KW | 75HP | 87KW | 18HP |
Series 8 | 35mm | 106.5mm
|
70KW | 95HP | 110KW | 150HP |
Series 38 | 38mm | 102mm | 70KW | 95HP | 110KW | 150HP |
Company Profile
Certifications
FAQ
Type: | Plain Bore Yoke D |
---|---|
Usage: | Agricultural Products Processing, Farmland Infrastructure, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying |
Material: | Stainless Steel |
Power Source: | Pto Dirven Shaft |
Weight: | Standard |
After-sales Service: | 1 Year |
Samples: |
US$ 300/Piece
1 Piece(Min.Order) | |
---|
Choosing the Right Torque Limiter
Whether you are looking for a synchronous magnetic torque limiter, a mechanical torque limiter, a CZPT(r) Tolerance Ring, or a ball detent torque limiter, there are many options available. Hopefully this article will help you decide which type of limiter to use for your application.
Mechanical torque limiters
Designed to safeguard the main components of a machine, mechanical torque limiters are used in various applications, including woodworking, printing and converting, industrial robots and conveyors. They provide disengagement within milliseconds when torque overload occurs. The main purpose of these devices is to protect the machine’s drive line from excessive torque. They can be installed in several parts of a machine to maximize protection.
Mechanical torque limiters come in two main types: friction and magnetic. The friction type is made up of spring loaded friction disks that slip against each other when torque exceeds a threshold. The friction disks interface with each other like an automobile clutch. The spring rate of the disks is adjusted to create the torque slip threshold. Once the threshold has been reached, the friction disks slip out of the socket and disengage the drive line.
Mechanical torque limiters are often regarded as old fashioned. However, they offer better accuracy than alternatives, making them more suitable for a variety of applications. They are easily adjustable, allowing users to customize the disengagement torque value after installation.
Mechanical torque limiters are available in various sizes and can be used in virtually any application. These devices can be placed in multiple locations throughout a machine to disengage the drive line before the electronic device. They are able to disengage the drive line in a fraction of a second, ensuring that no damage is done to the machine.
Ball and roller torque limiters are popular designs. They are available for in-line and offset transmissions. These designs are often made with wide gears to accommodate a variety of torque ranges. They are also used for industrial robots and sheet metal processing equipment.
Synchronous magnetic torque limiters
Several types of torque limiters are available. Some of these are designed to automatically reset themselves after a period of overload. Others need to be reset manually. Among these are the synchronous magnetic torque limiter, the friction plate torque limiter and the spring-loaded pawl-spring torque limiter.
The synchronous magnetic torque limiter works with a pair of strong magnets mounted on each shaft. This provides a quick response time and the ability to transmit power to other parts of the vehicle. However, these limiters can have more backlash than mechanical types.
The synchronous magnetic torque limiter can be modified to work with various types of magnets. The magnets can be made closer or further apart. This will change the torque limitation without leaving the spirit of the invention.
The friction plate torque limiter can also be used as a shaft-to-shaft coupling. This is useful for applications where the machine is constantly running. The torque limiter also prevents torsional strain on the drive shaft.
Another type of torque limiter uses hard balls that are held in place by springs. The balls detach to disconnect the drive when necessary. This is similar to a clutch. The balls can be housed in conical holes in the traction flange. The springs prevent the balls from slipping out of the flange.
Another type of torque limiter uses springs, shear pins, and other mechanical components. It’s designed to shut down the machine when there’s too much inertia. This is important because too much inertia can cause a crash. This type of torque limiter can be used to prevent catastrophic failure.
There are also torque limiters that use magnetic particles instead of magnets. These can be statically set or dynamically set.
Ball detent torque limiters
Choosing the right torque limiter can protect your machinery against damage. They can also prevent physical injury to workers. There are several designs to choose from. Some systems offer a single position device. Others offer a random reset device. The selection is based on your application.
Ball detent torque limiters are used in applications where precise torque is required. They offer good torque density and are suitable for packaging, woodworking, textile and food processing machinery. The design of these units allows them to react quickly and accurately to an overload. They can be manually engaged or automatically engaged when an over-torque condition is corrected.
In a typical ball detent torque limiter, a number of balls or rollers are used in sockets. When the load is overloaded, the balls or rollers slide out of the sockets. The balls are made of chrome-alloy steel that is hardened to at least Rc 60.
A torque limiter is used to prevent physical injury and damage to rotating machine components. It protects expensive components. They are used in servo systems, packaging, woodworking, textile and food processing machinery, as well as a wide range of other applications.
The design of a torque limiter can cause significant wear on the detents. Therefore, the selection of a torque limiter must consider the number of components and the complexity of the design.
Some torque limiters use special methods to eliminate internal backlash. Others use a pneumatic control system. An air pressure system applies force to a piston that applies torque to the balls or rollers in the detent. The air pressure is then exhausted from an air chamber when the overload occurs.
The air pressure is also used to disengage the torque limiter in case of an accident. The pneumatic control system is also used in more advanced ball detent torque limiters.
CZPT(r) Tolerance Ring
CZPT(r) Tolerance Ring limits limiter torque to a greater extent than a conventional design. This ring comprises a resilient material band extending between a pair of components. Each of the components is statically coupled to the other. Each of the components has a pair of radial projections adapted to exert radial forces against the other. Typically, the inner and outer components rotate with respect to one another. This rotation is caused by the torque transmitted by the tolerance ring. This torque can exceed the force of interference fit.
The tolerance ring includes an outer circumference, a tangent circle 36, and a center point 38. The diameter of the tolerance ring is determined by the amount of overlap between the ends of the band. Normally, the diameter of the tolerance ring is smaller than the diameter of the unformed annular portions.
The tolerance ring may be made of metal such as spring steel. This material provides increased gripping strength and radial flexibility. However, tolerance rings can also be made of harder material. The inner component can be made of a material having a VPNIC less than the tolerance ring’s VPNTR.
The tolerance ring also includes a guide portion extending from an unformed annular portion of the band. The guide portion defines an entrance at one end of the ring. The entrance can be slanted in relation to the axis of the ring. The perimeter of the entrance is a fraction of the perimeter of the band.
The tolerance ring can also include a plurality of wave structures extending radially outward from the undeformed portion. These structures can be regular formations, such as ridges or fingers, or they can be partially disconnected from the undeformed portion. Each wave structure can have a different physical appearance. They can be arranged to have a plurality of columns, or they may be one or two rows of formations. The number of wave structures can be anywhere from a few to dozens. These structures can also be partially disconnected from the undeformed portion, allowing them to provide enhanced gripping properties.
Challenge slip clutch/friction plate torque limiters
Choosing the right torque limiter can help you save money, prevent damage and extend the life of your machine. Typically, torque limiters are used in engines of all types of manual automobiles. They are also used in servo motor drives, conveyors, robotic applications, printing and converting machines, and in sheet metal processing equipment.
One of the most important reasons to consider a torque limiter is the protection it offers to your rotating parts. Unnecessary torque can wear out components, reduce efficiency and lead to downtime. In addition, unexpected forces can exceed the design of a mechanism. Torque limiters can also act as a clamping hub for direct drives.
Torque limiters are also useful in limiting damage from jams. These are generally cylindrical devices that are made from steel, and are used to transfer torque from a drive shaft to an output shaft. They appear to be rings, but are actually composed of an internal assembly of gears. A torque limiter can be configured for electrical actuation or manual operation.
Another important function of a torque limiter is to provide a consistent torque level. This can help reduce downtime and prevent larger, more costly accidents.
The most obvious way to achieve this is through a slip clutch. A slip clutch is a clutch that disconnects from the main drive, allowing inertia to uncouple from a jammed section. This is achieved by using a spring or a shear pin connection.
Another interesting function of a torque limiter is to allow for a longer service life of the shaft in a low-speed application. They are often used in combination with sprocket gears or timing belts. This can provide a smoother, more consistent torque level.
editor by CX 2023-11-14